
Changepoint Estimation in Sparse Dynamic Stochastic Block Models
under Near-Optimal Signal Strength

Shirshendu Chatterjee Soumendu Sundar Mukherjee Tamojit Sadhukhan
City University of New York,

Graduate Center and City College,
New York, NY, USA

Statistics and Mathematics Unit
Indian Statistical Institute,

Kolkata, WB, India

Statistics and Mathematics Unit
Indian Statistical Institute,

Kolkata, WB, India

Abstract

We consider the offline changepoint estimation
problem in the context of multilayer stochastic
block models. We develop an algorithm involv-
ing suitably chosen CUSUM statistics based on
the adjacency matrices of the observed networks
for estimating a single changepoint present in the
input data. We provide rigorous theoretical guar-
antees on the performance of the proposed method
when one or more of the following phenomena
occur at the changepoint: (a) merging of com-
munities, (b) splitting of communities, and (c)
changes in the connection probabilities among
the communities. We derive a lower bound on the
minimax detectability threshold involving the rel-
evant signal strength parameter and show that the
proposed algorithm can estimate the changepoint
consistently when the signal strength is above a
small multiplicative factor times the minimax de-
tectability threshold. We do not make any a priori
assumption on the sparsity of the underlying net-
works and only require that the overall average de-
gree goes to infinity. Via simulation experiments,
we empirically show that the proposed algorithm
works in regimes of signal strength where global
network changepoint estimation algorithms that
do not take into account the community structure,
fail to estimate an existing changepoint correctly.
Finally, we apply our algorithm to a series of net-
works constructed using roll call data from the US
senate and obtain changepoint(s) which align with
those reported in the political science literature
regarding the phenomenon of increasing political
polarization.
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1 INTRODUCTION

Sequences of networks are now widely available as the main
observable or derived data in many fields of research, includ-
ing time-series of social networks (Panisson et al. (2013);
Stopczynski et al. (2014); Rocha et al. (2010)), epidemio-
logical networks (Salathé et al. (2010); Rocha et al. (2011)),
animal networks (Gates and Woolhouse (2015); Lahiri and
Berger-Wolf (2007)), mobile and online communication
networks (Krings et al. (2012); Ferraz Costa et al. (2015);
Jacobs et al. (2015)), economic networks (Popović et al.
(2014); Zhang et al. (2014)), brain networks (Park and Fris-
ton (2013); Sporns (2013)), genetic networks (Rigbolt et al.
(2011)), and ecological networks (Blonder et al. (2012)). In
addition to more classical statistical problems on temporal
networks (e.g., modeling, analysis of statistical behavior
and dynamics, community detection (Holme and Saramäki
(2012); Holme (2015); Peixoto (2015); Sikdar et al. (2016);
Peixoto and Gauvin (2018))), estimation of changepoints
have garnered emerging interest recently. Potential appli-
cations are in, for instance, brain imaging, where one has
brain scans of individuals collected over time and is looking
for abnormalities, ecological networks observed over time,
where one wonders if there is a structural change, etc. Moti-
vated by these observations, in this article, we consider the
problem of estimating changepoint(s) in a finite sequence
of networks having community structure. Our aims are (a)
to obtain the information-theoretic detectability threshold
(in the minimax sense) for the signal strength associated
with multilayer stochastic block models (MSBM) having
changepoints, and (b) to develop an efficient polynomial-
time changepoint estimation procedure that performs con-
sistently even when the input MSBM is extremely sparse
(e.g., when the degrees of the nodes are sub-logarithmic in
the number of nodes) and has very low signal strength.

Estimation of changepoints in sequentially observed data
is a classical problem in statistics going back to the early
days of statistical quality control. We refer the readers to
Bhattacharyya et al. (2020) for pointers to classical works
on changepoint estimation as well as a discussion of recent
works on the network changepoint problem. Recent works
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that are most relevant to us, include Mukherjee (2018);
Wang et al. (2021); Bhattacharjee et al. (2020); Zhao et al.
(2019); Bhattacharyya et al. (2020). These works propose
methods for changepoint estimation in networks generated
from several related models and also provide theoretical
guarantees on the consistency of the proposed methods.
Bhattacharjee et al. (2020) consider changepoint problems
in the context of a dynamic stochastic block model but only
tackle the setting of dense graphs. Mukherjee (2018); Wang
et al. (2021) (resp. Bhattacharyya et al. (2020)) have pro-
posed changepoint estimation methods for sequences of
independent and semi-dense inhomogeneous Erdős-Rényi
random graphs, which are consistent when the associated
signal strength is near-optimal (resp. optimal). The method
proposed by Zhao et al. (2019) is based on graphon estima-
tion and therefore only relevant for dense graphs. Our results
in the present article show that when networks have com-
munity structures, all of the above-mentioned methods are
sub-optimal either in terms of the required signal strength,
or in terms of the required assumptions on network spar-
sity. For example, Mukherjee (2018); Wang et al. (2021);
Zhao et al. (2019); Bhattacharyya et al. (2020) require much
higher signal strengths for consistency than the minimax
threshold for consistent estimation derived in this paper. Our
proposed estimation method achieves consistency above this
threshold (up to logarithmic factors) when the number of
communities is polylogarithmic in the network sizes and the
number of networks. Moreover, unlike the present paper,
Mukherjee (2018); Wang et al. (2021); Bhattacharjee et al.
(2020); Zhao et al. (2019) require the input networks to be
dense (or semi-dense) for their theoretical results to hold.
We explain these in more detail in Section 2.3.

In this article, our main focus is on obtaining the correct
order of signal strength required for consistent estimation
of changepoints in the presence of community structures.
We have therefore restricted our attention to models with
a single changepoint, where this can be achieved in the
cleanest possible manner. Our proposed method can be
coupled with off-the-shelf meta-algorithms such as wild
binary segmentation (Fryzlewicz et al. (2014)) to estimate
multiple changepoints (see Section 5.2 for an empirical
illustration of this). We also note that our method may be
applied within sliding time-windows to detect changepoints
in an online fashion. These will be the focus of a future
work.

2 CONTRIBUTIONS AND COMPARISON
WITH RELATED WORKS

We begin by describing the changepoint estimation problem
for networks with community structure.

2.1 Setup

A multilayer network having n nodes and T layers consists
of a finite sequence of undirected graphs G(t) for t ∈ [T ] :=
1, . . . , T on the same vertex set [n] := {1, 2, . . . , n}, which
possibly have different sets of edges at different layers. We
refer to G(t) as the t-th network layer and represent it by the
corresponding n×n adjacency matrix A(t), whose elements
are A

(t)
ij ∈ {0, 1} for i, j ∈ [n], with A

(t)
ij = 1 if there is

an edge between node i and node j in the t-th layer, and
A

(t)
ij = 0 otherwise.

Definition 2.1. A Multilayer Stochastic Block Model
(MSBM) having n nodes, T layers, and K communities
is a model for generating multilayer networks that can be
described in terms of the following components.

(i) The community membership vector (z1, . . . , zn),
where zi ∈ [K] := {1, . . . ,K} denotes the commu-
nity index of vertex i ∈ [n], given by the following
specifications:

z1, . . . , zn
i.i.d.∼ Multinomial(1;π1, . . . , πK),

where the K × 1 vector (π1, . . . , πK) consists of the
probabilities of allocation to different communities.

(ii) The n× n adjacency matrices A(t), t ∈ [T ], given by
the following specifications:

P
(
A

(t)
ij = 1 | zi, zj

)
= B(t)

zizj for i < j, i, j ∈ [n],

A
(t)
i0j0

⊥⊥ A
(t)
i1j1

for (i0, j0) ̸= (i1, j1) ∈ [n]× [n],

A(t0) ⊥⊥ A(t1) for t0 ̸= t1 ∈ [T ],

where the K × K matrices B(t), t ∈ [T ] are the
community-wise connection probability matrices (to
be referred to as the block-connectivity matrices).

In an MSBM, the community membership vector
(z1, . . . , zn) can be equivalently expressed using the n×K
community membership matrix Z, defined as

Zik = 1{zi=k} for i ∈ [n] and k ∈ [K].

Using Z, the edge-probability matrix (i.e. the expected
adjacency matrix) of the t-th layer can be written as

P (t) := EA(t) = ZB(t)ZT , t = 1, . . . , T.

Our theoretical results assume that we observe a multi-
relational network having T layers, n nodes, and community
structures that change at a single changepoint τ ∈ [T ]. At
the changepoint τ , one or more of the following phenomena
occur:

(a) some of the existing communities split into multiple
communities (in which case the number of communi-
ties increases),
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(b) some of the existing communities merge into bigger
communities (in which case the number of communi-
ties decreases),

(c) the connectivity probabilities between some pairs of
communities change.

The segments before and after the changepoint τ are as-
sumed to be samples from MSBMs with constant block-
connectivity matrices.

More elaborately, let K0 (resp. K1) denote the number of
communities and

C0
1 , . . . , C

0
K0

⊂ [n] (resp. C1
1 , . . . , C

1
K1

⊂ [n])

denote the communities before (resp. after) the changepoint
τ . Let the n×K0 (resp. n×K1) community membership ma-
trix before (resp. after) the changepoint τ be Z̃0 (resp. Z̃1),
given by (Z̃0)ia = 1{i∈C0

a} (resp. (Z̃1)ia = 1{i∈C1
a}) for

i ∈ [n] and a ∈ [K0] (resp. a ∈ [K1]). Let B̃(t) denote
the associated block-connectivity matrix for the t-th layer.
In our setup, the matrices B̃(t), t ∈ [T ] change at t = τ ,
1 ⩽ τ ⩽ T . More precisely, there exists K0 × K0 (resp.
K1 ×K1) probability matrix B̃0 (resp. B̃1) such that

B̃(t) =

{
B̃0, 1 ⩽ t ⩽ τ,

B̃1, τ + 1 ⩽ t ⩽ T.

The expected adjacency matrix before (resp. after) τ can be
written as P0 = Z̃0B̃0Z̃

T
0 (resp. P1 = Z̃1B̃1Z̃

T
1 ).

One specialty of the above setup is that it can be recast as
an instance of a single MSBM. In order to see this, consider
a directed weighted bipartite graph G = (V0, V1, E) with
|V0| = K0 and |V1| = K1. For i ∈ [K0], the i-th node
in V0 corresponds to C0

i , the i-th pre-change community
and for j ∈ [K1], the j-th node in V1 corresponds to C1

j ,
the j-th post-change community. A node is called a parent
node if at the changepoint, the corresponding community
either i) splits into two or more communities, or ii) is formed
by merging two or more communities, or iii) does not un-
dergo any change and belongs to V0. Non-parent nodes are
called child nodes. We identify the parent node (resp. child
node(s)) of a child node (resp. parent node) in the obvious
way. We put directed weighted edge(s) from a parent node
to its child node(s), with the weights equal to the size of
the community corresponding to the child node. Let K be
the number of child nodes in G. For a ∈ [K], let Ca be
the community corresponding to the a-th child node in G.
The community structure formed by the K-communities
C1, . . . , CK is the lifted community structure. We define
the lifted n×K membership matrix Z by

Zia = 1{i∈Ca} for i ∈ [n] and a ∈ [K].

Let S := {C0
k ∩ C1

l : k ∈ [K0] and l ∈ [K1]}. It is easy to
see that K = |S| and C1, . . . , CK is an enumeration of S.

However, K is typically much smaller than its maximum
possible value K0K1. Observe that for each a ∈ [K], we
know the following about Ca, the a-th child node in G:

a) whether it belongs to V0 or V1;

b) if it belongs to V0 (resp. V1), its original index in V0

(resp V1), which we denote by γa ∈ [K0] (resp. [K1]);

c) if it belongs to V0 (resp. V1), the index of its parent
node in V1 (resp. V0), which we denote by πa ∈ [K1]
(resp. [K0]).

Using these information, we define the pre-change (resp.
post-change) lifted K × K block-connectivity matrix B0

(resp. B1) in the following way. Fix k, l ∈ [K]. For
a ∈ [K], set

ua =

{
γa if a ∈ V0,

πa if a ∈ V1;
va =

{
πa if a ∈ V0,

γa if a ∈ V1.

Then

(B0)kl := (B̃0)ukul
, (B1)kl := (B̃1)vkvl .

The purpose of lifting the number of communities in this
way is to consistently describe the communities and the
block-connectivity matrices before and after the change-
point. Under this equivalent lifted community structure,
the lifted membership matrix Z remains the same through-
out but the lifted block-connectivity matrices B(t), t ∈ [T ]
change at t = τ :

B(t) =

{
B0 if 1 ⩽ t ⩽ τ,

B1 if τ + 1 ⩽ t ⩽ T.

Also the expected adjacency matrix before (resp. after) τ
can be written as P0 = ZB0Z

T (resp. P1 = ZB1Z
T ).

In Figure 1, we depict an example with K0 = 3,K1 = 4,
K = 5 and n = 5m with m = 2. Take

B̃0 =

p q q
q p q
q q p

 ; B̃1 =

p q q q
q p q q
q q p q
q q q p

 ;

Z̃0 =

13me⊤1
1me⊤2
1me⊤3

 ; Z̃1 =


1me⊤1
1me⊤2
1me⊤3
12me⊤4

 .

We can then lift the community structures to a common Z
(cf. Figure 1) as follows. Take

B0 =


p p p q q
p p p q q
p p p q q
q q q p q
q q q q p

 ; B1 =


p q q q q
q p q q q
q q p q q
q q q p p
q q q p p

 ;

Z =


1me⊤1
1me⊤2
1me⊤3
1me⊤4
1me⊤5

.
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Figure 1: An example of simultaneous merging and splitting
of communities. There are 10 nodes with three communities
C0

1 , C
0
2 , C

0
3 before the changepoint τ and four communities

C1
1 , C

1
2 , C

1
3 , C

1
4 after the changepoint τ . The figure on the

right panel shows the corresponding directed bipartite graph
G (here m = 2).

It is then clear that ZB0Z
⊤ = Z̃0B̃0Z̃

⊤
0 and ZB1Z

⊤ =

Z̃1B̃1Z̃
⊤
1 .

The primary goal of this article is to estimate the location
of the changepoint τ consistently. The complexity of the
changepoint detection problem depends on the following
quantities:

i) The sparsity of the networks, given by d := nρ, with

ρ := ∥B0∥∞ ∨ ∥B1∥∞ ,

where ∥M∥∞ := maxi,j |Mij |.

ii) The signal strength, which is a measure of the differ-
ence between B0 and B1. In this article, we take the
Frobenius norm ∥B0 −B1∥F as the signal strength.

iii) The cushion κ = min{τ, T − τ}, the minimum length
of the segments without change.

2.2 Our Contributions

Under Assumptions 3.1 and 4.2, we obtain the following.

1. A lower bound for the changepoint detectability thresh-
old (in the minimax sense) in terms of the signal
strength ∥B0 −B1∥F , which is given by

θ0 = θ0(n, T,K, d, κ) :=

√(
K

n

)3
d

κ
.

2. An upper bound for the changepoint detectability
threshold by devising a polynomial-time changepoint
estimation algorithm. For any Λ ∈ [T ], our algorithm
can detect the changepoint consistently and give a high-
probability confidence interval of length Λ for τ , pro-
vided

(a) ∥B0 − B1∥F ≫
√

K log(KL)

√(
K
n

)3 d
Λ∧κ ,

where L =
⌈
3T
Λ

⌉
− 2.

(b) Tdλ ≫ 1, where λ := ρ−1λmin(B̄) is the
sparsity-normalized smallest eigenvalue of the av-
erage connection probability matrix B̄ := τ

T B0 +(
1− τ

T

)
B1 of the pre- and post-changepoint block-

connectivity matrices B0 and B1.

Remark 2.2. Note that if max{K0,K1} (and therefore K)
is at most poly-logarithmic in max{n, T}, then our lower
and upper bounds match up to logarithmic factors.

2.3 Summary of Related Theoretical Results

We now summarize, using the notation of the present pa-
per, the assumptions required in previous works in order to
ensure that the methods proposed therein are consistent.

• Mukherjee (2018) requires that either d ≫
√
log T and

∥B0 −B1∥F ≫ n
√

T
κK θ0, or d ≫ T (log(nT ))2 and

∥B0 −B1∥op ≫
√

nT
κK θ0.

• Bhattacharjee et al. (2020) require that (see pages 6, 7,
and 10 of their paper) d ≫ n3/5,K ≪ d1/3, ∥B0 −
B1∥F ≫

√
KT
κ θ0, T = O

(
d2

K4

)
, and that the mini-

mum between the smallest eigenvalues of B0 and B1

is positive.

• Wang et al. (2021) require that (see their Assumptions
1 and 4) d ≫ log n, ∥B0−B1∥F ≫

√
n log1+ϵ(T ) θ0

for some ϵ > 0, and some additional restrictions (see
their Assumption 5) on the diagonal and off-diagonal
entries of B0 and B1. Furthermore, the algorithm in
Wang et al. (2021) requires two independent copies of
the network time series, which limits its usefulness.

• Zhao et al. (2019) require d ⩾ cn for some constant
c > 0, ∥B0 − B1∥F ≫ (n3T/K2)1/4polylog(n) θ0
and T = O(poly(n)).

• Bhattacharyya et al. (2020) require that ∥B0−B1∥F ≫√
n
K θ0.

Although Bhattacharjee et al. (2020) is better in terms of
signal strength by a factor

√
logK, they require d ≫ n3/5

for consistency, whereas we only require d ≫ 1
Tλ (see

Proposition 4.5). Thus we can operate in a much broader
regime of sparsity. Also, our method requires a significantly
smaller signal strength compared to that required by the
global changepoint estimation algorithm of Bhattacharyya
et al. (2020), provided K2 logK ≪ n, which is a rather
mild assumption. We empirically demonstrate these advan-
tages in Section 5.1.
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3 PROPOSED METHODOLOGY

3.1 Estimation of the Community Membership Matrix

In the context of MSBM, many estimators of the community
membership matrix Z are readily available in the literature,
see, e.g., Bhattacharyya and Chatterjee (2020a). Our al-
gorithm works with any such estimate Ẑ of Z. For our
theoretical results, we need the proportion of nodes misclas-
sified by Ẑ to be small with high probability.

Assumption 3.1. Let M(Ẑ) denote the number of nodes
misclassified by the estimator Ẑ. Then, for any ϵ > 0,

P
(
M(Ẑ) ≤ ϵn

)
≥ 1− P(ϵ,K, n, d, T ), (1)

where P(ϵ,K, n, d, T ) is a probability function of ϵ,K, n, d

and T which depends on the algorithm used to obtain Ẑ and
is decreasing in ϵ.

See Proposition 4.5 for an illustration of such an estimator.
For m ∈ [K], let Ĉm = {k : Ẑkm = 1} be the m-th
community estimated using Ẑ and n̂m = |Ĉm| be its size.

3.2 Estimation of the Block-Connectivity Matrices

For k, l ∈ [K], we estimate the (k, l)-th entry of the block-
connectivity matrix B(t) of the t-th layer by

B̂
(t)
kl =

1

n̂2
kl

∑
i∈Ĉk

j∈Ĉl
i<j

A
(t)
ij , where n̂2

kl =

{(
n̂k

2

)
if k = l,

n̂kn̂l if k ̸= l.

(2)
Note that if Ẑ ≡ Z, then B̂

(t)
kl is the Maximum Likelihood

Estimate (MLE) of B(t)
kl .

3.3 Estimation of the Changepoint

First, we describe an oracle version of our changepoint
estimation algorithm. Given the oracle parameter Λ, we
divide the entire sequence [T ] into multiple smaller windows
of length Λ and search for a candidate for the changepoint
estimate in each of these windows. The collection of smaller
windows consists of intervals of the form Il = Il(Λ) :=
(Tl, Tl + Λ], where

Tl = Tl(Λ) := (l − 1)

⌊
Λ

3

⌋
(3)

for l = 1, . . . , L = L(Λ) :=

⌈
3T

Λ

⌉
− 2.

For each l ∈ [L], we use the estimated block-connectivity
matrices (B̂(Tl+v))Λv=1 to construct the cumulative sum

(CUSUM) statistics corresponding to window Il, given by,

Ĝ
(Tl+u)

l = Ĝ
(Tl+u)

l (Λ) :=

(
u

Λ

(
1− u

Λ

))δ

(4)

×
(
1

u

u∑
v=1

B̂(Tl+v) − 1

Λ− u

Λ∑
v=u+1

B̂(Tl+v)

)
,

for u ∈ S(Λ) :=

[⌊
Λ

3
∧ κ

2

⌋
+ 1, . . . ,Λ−

⌊
Λ

3
∧ κ

2

⌋]
,

where δ ∈ [0, 1] is an input of our algorithm. In each
window Il, we maximize the Frobenius norm of the cor-
responding CUSUM statistic w.r.t. u ∈ S(Λ) to obtain a
candidate changepoint estimate τl, given by

τl = τl(Λ) := Tl + argmax
u∈S(Λ)

∥∥Ĝ(Tl+u)

l

∥∥
F
.

If the maximum of Frobenius norm of the CUSUM statistics
evaluated at these candidates exceeds a threshold

max
l∈[L]

∥∥Ĝ(τl)

l

∥∥
F
> Cs

√(
K

n

)3
d̂

Λ
3 ∧ κ

2

,

we set the maximizing candidate as the changepoint estimate

l(Λ) = argmax
l∈[L]

∥∥Ĝ(τl)

l

∥∥
F

and τ̂(Λ) = τl(Λ).

In the above threshold, Cs is an input of our algorithm,
which controls the type-I and type-II errors of the estimate
(see Theorem 4.4), and d̂ is given by

d̂ =
1

nT

∑
t∈[T ]

∑
i,j∈[n]

A
(t)
ij .

In practice, S(Λ) is unknown (as κ is unknown) and we
need to use a proxy for that. We can simply work with

S̃(Λ) =

[⌊
Λ

3

⌋
+ 1, . . . ,Λ−

⌊
Λ

3

⌋]
,

which equals S(Λ) provided Λ ≤ 3κ/2. (this is the reason
the choice of Λ is oracle). So, in practice, the length of
the smaller windows Λ̄ is a tuning parameter of our estima-
tion algorithm, which we would like to be as minimum as
possible. Our algorithm repeats the entire above procedure,
replacing Λ by Λ̄ and S(Λ) by S̃(Λ̄), for different Λ̄, start-
ing from Λ̄ = T to Λ̄ = Λmin (an input of our algorithm).
Let Λ̄0 be the minimum Λ̄ for which a τ̂(Λ̄) is obtained. We
set τ̂ := τ̂(Λ̄0) with[

(l(Λ̄0)− 1)

⌊
Λ̄0

3

⌋
+ 1, (l(Λ̄0)− 1)

⌊
Λ̄0

3

⌋
+ Λ̄0

]
as a confidence interval for τ . Note that we may not get
such a Λ̄0 in which case our algorithm gives no output. The
entire estimation procedure is described in Algorithm 1.
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Algorithm 1: Estimation Procedure

Input :
(
A(t)

)
t∈[T ]

, Ẑn×K , δ ∈ [0, 1], Cs, Λmin.
Output :Λ̄0, l(Λ̄0), τ̂ .

1. For all m ∈ [K], set

Ĉm = {k : Ẑkm = 1}, n̂m = |Ĉm|.

2. For all t ∈ [T ] and k, l ∈ [K], obtain B̂
(t)
kl , given

by (2).

3. Set d̂ = 1
nT

∑
t∈[T ]

∑
i,j∈[n] A

(t)
ij .

4. For each Λ̄ = T, . . . ,Λmin, repeat steps 5, 6, 7.

5. For l = 1, . . . ,
⌈
3T/Λ̄

⌉
− 2 and for u ∈ S̃(Λ̄),

obtain Tl(Λ̄) and Ĝ
(Tl+u)

l (Λ̄), given by (3) and (4).

6. For all l = 1, . . . , L(Λ̄) :=
⌈
3T/Λ̄

⌉
− 2, set

τl = Tl(Λ̄) + argmax
u∈S̃(Λ̄)

∥∥Ĝ(Tl+u)

l (Λ̄)
∥∥
F
.

7. If maxl∈[L(Λ̄)]

∥∥Ĝ(τl)

l (Λ̄)
∥∥
F
> Cs

√(
K
n

)3 d̂
Λ̄

, set

l(Λ̄) = argmaxl∈[L(Λ̄)]

∥∥Ĝ(τl)

l (Λ̄)
∥∥
F

and
τ̂(Λ̄) = τl(Λ̄).

8. Let Λ̄0 be the minimum Λ̄ for which τ̂(Λ̄) is
obtained. Declare τ̂ := τ̂(Λ̄0) with[
(l(Λ̄0)− 1)

⌊
Λ̄0

3

⌋
+ 1, (l(Λ̄0)− 1)

⌊
Λ̄0

3

⌋
+ Λ̄0

]
as a confidence interval for τ .

Algorithm 1 is a polynomial (in n and T ) time algorithm.
Step 1 takes O(nK) time. Steps 2 and 3 take O(n2T ) time.
In each of the O(T ) iterations of Step 4, for a fixed Λ, Steps
5 and 6 take O

(
T
Λ · Λ

)
= O(T ) time and Step 7 takes

O
(
T
Λ

)
time. So, overall Step 4 takes O(T 2) time. Hence,

Algorithm 1 has time-complexity O(T max{n2, T}).
Remark 3.2. In Bhattacharyya et al. (2020), the following
CUSUM statistics, given by, for l ∈ [L(Λ)] and u ∈ S(Λ),

F̂
(Tl+u)

l = F̂
(Tl+u)

l (Λ) :=

(
u

Λ

(
1− u

Λ

))δ

(5)

×
(
1

u

u∑
v=1

A(Tl+v) − 1

Λ− u

Λ∑
v=u+1

A(Tl+v)

)
,

is used. It does not take into account the community struc-
ture and so the corresponding changepoint estimate τ̃ re-
quires higher signal strength, as mentioned in Section 2.3.
In Section 5.1, we also illustrate this empirically.

3.4 Motivation behind the Estimation Algorithm

Fix any Λ ∈ [T ]. For each l ∈ [L] and u ∈ [Λ], consider the
population version of the CUSUM statistic, given by

G
(Tl+u)
l :=

(
u

Λ

(
1− u

Λ

))δ

×(
1

t

u∑
v=1

B(Tl+v) − 1

Λ− u

Λ∑
v=u+1

B(Tl+v)

)
.

Observe that(
u

Λ

(
1− u

Λ

))−δ

G
(Tl+u)
l

=


0 if τ /∈ Il,
Tl+Λ−τ
Λ−u

(
B0 −B1

)
if τ ∈ Il, u ≤ τ − Tl,

τ−Tl

u

(
B0 −B1

)
if τ ∈ Il, u > τ − Tl.

For any δ ∈ [0, 1], the function

u 7→


(

u
Λ

(
1− u

Λ

))δ
Tl+Λ−τ
Λ−u , u ≤ τ − Tl,(

u
Λ

(
1− u

Λ

))δ
τ−Tl

u , u > τ − Tl,

has a unique maxima at u = τ − Tl. Thus for any l, l′ such
that τ ∈ Il but τ /∈ Il′ , we get

0 = max
u∈[Λ]

∥∥G(Tl′+u)
l′

∥∥
F
≤ max

u∈[Λ]

∥∥G(Tl+u)
l

∥∥
F
, and

τ = Tl + argmax
u∈[Λ]

∥∥G(Tl+u)
l

∥∥
F
.

This is the primary motivation for maximizing the CUSUM
statistic to get the changepoint estimate.
Remark 3.3. The CUSUM statistic(s) (for any particular
window) tends to get maximized near the boundary of the
interval due to a lack of concentration. So, we omit 2

⌊
Λ
3∧κ

⌋
-

many points from the boundary while maximizing them.
Remark 3.4. In the classical univariate changepoint problem,
the factor

(
u
Λ

(
1 − u

Λ

))δ
, δ ̸= 0 plays an important role in

controlling the type-I and type-II errors for detection of
changepoint and also the estimation error. See, for example,
Chapter 3 of Brodsky and Darkhovsky (2013). Also, it is
empirically beneficial as it curbs down the tendency of the
CUSUM statistic to get maximized near the boundary of the
intervals, as stated in Remark 3.3.

4 MAIN RESULTS

We state and discuss our main theoretical results in this sec-
tion. The proofs are deferred to the supplementary material.
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4.1 Lower Bound

We begin with a lower bound result that shows that if ∥B0−
B1∥F = O

(√(
K
n

)3 d
κ

)
, then it is not possible to estimate

τ consistently.

Let Pt
B = ⊗t

s=1PB denote the joint distribution of t net-
works generated from an MSBM having t layers, n nodes
and B as the common K ×K connectivity matrix for each
of the t layers. Let MK be the set of all symmetric K ×K
matrices with entries in [0, 1]. For B0, B1 ∈ MK , let

PT
τ,B0,B1

:= ⊗τ
t=1PB0 ⊗T

t=τ+1PB1

denote the joint distribution of T networks generated from
an MSBM with T layers, n nodes and the K × K block
connection probability matrix changes from B0 to B1 at the
changepoint τ . For any two distributions ν0 and ν1 on MK ,
let

PT
τ,ν0,ν1

(·) := Eν0,ν1
PT

τ,B0,B1
(·).

For κ ∈ [T ], and γ > 0, let

Pγ,κ :=

{
PT

τ,ν0,ν1
:

(a) ν0 and ν1 are distributions on MK ,

(b) (B0, B1) ∼ (ν0,ν1) satisfies

∥B0 −B1∥2F ⩽ γ

(
K

n

)3
d

κ
,

with d = n(∥B0∥∞ ∨ ∥B1∥∞),

(c) κ ⩽ τ ⩽ T − κ

}
.

We are now ready to state our lower bound result.

Theorem 4.1 (Lower Bound). For P0 ∈ Pγ,κ, let τ(P0)
denote the changepoint under the probability distribution
P0. For any ε > 0, there is a constant γ(ε) > 0 such that
for any r ∈ [n] and κ ⩽ T/4,

inf
τ̂

sup
P0∈Pγ,κ

E0 |τ̂ − τ(P0)| ⩾
T

3
(1− ε).

This means, in the class Pγ,κ of models with signal strength

of the order of
(
K
n

)3/2( d
κ

)1/2
, there are models for which

no algorithm can estimate the changepoint consistently.

4.2 Upper Bound

In the other direction, we establish that if the signal strength

∥B0 −B1∥F ≫
√
K log(KL) θ1,

where θ1 :=

√(
K
n

)3 d
Λ∧κ , then the oracle algorithm esti-

mates τ consistently. It may be noted that this is almost

optimal (up to the dependence on K) The main reasons be-
hind the improvement over prior works are two-fold. First,
we are estimating the underlying community structure using
averaged adjacency matrices (see Proposition 4.5). Opti-
mal rates for community estimation using this method are
available in Bhattacharyya and Chatterjee (2020b). Fur-
ther, our method uses CUSUM statistics based on estimated
block-connectivity matrices, as opposed to adjacency ma-
trices, thus incorporating the low-rank nature of the edge-
probability matrices for networks with community structure.

The following assumptions are standard in the literature.

Assumption 4.2. There exist constants C1, C2 with C1 ≥
C2 ∨ 1 such that C2

(
n
K

)
≤ nm ≤ C1

(
n
K

)
for all m ∈ [K].

Assumption 4.3. There exists a constant 0 < c0 < 1 such
that the average degree of the networks d̄ satisfy

d̄ :=
1

nT

∑
t∈[T ]

∑
i,j∈[n]

E
(
A

(t)
ij

)
= c0d.

We now state our upper bound result.

Theorem 4.4 (Upper Bound). Assume that the Assump-
tions 3.1, 4.2 are satisfied and let

w := θ−1
1 ∥B0 −B1∥F

(
Λ ∧ κ

3Λ

(
1− Λ ∧ κ

3Λ

))δ

.

Then there exist absolute constants C1, C2, C3, C4 > 0 such
that the following results hold.

i) (Type-I error bound) Assume that Assumption 4.3 holds,
B0 = B1 and ∆1 = Cs

√
c0/2. Then the algorithm

produces an output τ̂ with probability at most

C1K2L exp

(
− C2∆2

1

K

)
+ C3P

(
C4∆1θ1
K2

,K, n, d, T

)
+ exp

(
− c20

16
nTd

)
.

ii) (Type-II error bound) Assume that the Assumption 4.3
is satisfied and ∆2 := w−3Cs

√
3c0/2 > 0. Then the

algorithm produces no output with probability at most

C1K2L exp

(
− C2∆2

2

K

)
+ C3P

(
C4∆2θ1
K2

,K, n, d, T

)
+ exp

(
− c20

16
nTd

)
.

iii) (Localization bound) If Algorithm 1 gives an output τ̂ ,
then for all η ∈ (0, 1) and ϵ0 = (C4ηwθ1)/K

2,

P
(
1

Λ

∣∣τ̂ − τ
∣∣ ≥ η

)
≤ C1K2L exp

{
− C2η2w2

K

}
+ C3P

(
ϵ0,K, n, d, T

)
. (6)
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We now provide a concrete example of the probability func-
tion P considered in (1) and describe the localization bound
of τ̂ obtained using it.

Proposition 4.5. Assume that K = rank
(
τ
T B0 +

T−τ
T B1

)
and that Ẑ be obtained using spectral clustering of the sum
of the adjacency matrices (Algorithm 1 of Bhattacharyya
and Chatterjee (2020a)). Let λ be the smallest eigenvalue
of the average of normalized connectivity matrices and
λ = λK

(
n
d

(
τ
T B0 + 1−τ

T B1

))
> 0. By Theorem 1 of

Bhattacharyya and Chatterjee (2020a), there are constants
c1, c2, c3 > 0 such that if Td ≥ c2(K/λ)9/8, n ≥ 3K and
nmin := smallest community size > 2/λ, then

P
(
M(Ẑ) ≥ c1

(
K12

Tdλ8

)1/4

n

)
≤ 5 exp

(
− c3 min

{
Tdλ, (Td)1/2 log n

})
.

This result combined with (6) gives the following local-
ization bound for τ̂ . Assume that the Assumptions 3.1,
4.2, 4.3 are satisfied and w, C1, C2, C3, C4 are as in The-
orem 4.4. Then, for all η ∈ (0, 1), as long as (Td)1/4 ≥
(c1K

5)/(C4ηwθ1), we have

P
(
1

Λ

∣∣τ̂ − τ
∣∣ ≥ η

)
= C1K2L exp

{
− C2η2w2

K

}
(7)

+ 5C3 exp
{
− c3 min

{
Tdλ, (Td)1/2 log n

}}
.

Remark 4.6. From (7), it follows that if ∥B0 − B1∥F ≫√
K log(KL)θ1 and Tdλ ≫ 1, then τ̂ is consistent.

Remark 4.7. In Algorithm 1 of Bhattacharyya and Chatter-
jee (2020a), K is considered to be known. However, K can
be estimated based on the eigenvalues of the sum of squared
adjacency matrices. See Algorithm 3 of Bhattacharyya and
Chatterjee (2020c) and the discussions there.

5 EMPIRICAL RESULTS

All the analyses reported here were performed on Kaggle
notebooks (without any additional accelerator) using R. All
the figures and tables can be reproduced using the codes
available at https://gitlab.com/soumendu041/
cpd-sbm.

5.1 Simulation Experiments

Our simulation studies involve two experiments. Experi-
ment I empirically demonstrates the performance of τ̂ by
comparing it with τ̃ (see Remark 3.2), which is minimax
optimal in unstructured networks changepoint problems in
all regimes of sparsity. This experiment is performed under
four setups, designated as (a), (b), (c) and (d). In Ex-
periment II, we compare the performance of our algorithm
with the methods of Bhattacharjee et al. (2020), Wang et al.

Table 1: Experiment I: Mean Relative Error

Setup (a) (b) (c) (d)∣∣τ̂ − τ
∣∣/Λ̄0 0.008 0.005 0.009 0.021∣∣τ̃ − τ
∣∣/Λ̄0 0.447 0.513 0.306 0.433

Table 2: Experiment I: Empirical Coverage Probability

Setup (a) (b) (c) (d)

ECP 1.0 1.0 1.0 0.9
ECP 0.2 0.0 0.2 0.2

(2021), Zhao et al. (2019) and Bhattacharyya et al. (2020)
across varying level of sparsity. We perform Experiment II
also under four setups, designated again as (a), (b), (c)
and (d).

In setup (a) of both experiments, there is one community
initially that splits into two communities at the changepoint
(so, K0 = 1, K1 = 2, K = 2). In setup (b) of both experi-
ments, there are two communities throughout and only the
connectivity probability matrix changes at the changepoint
(so, K0 = K1 = K = 2). In setup (c) of both experiments,
there are two communities initially that merge into one com-
munity at the changepoint (so, K0 = 2, K1 = 1, K = 2).
In setup (d) of both experiments, there are three commu-
nities at first. At the changepoint. one of them splits into
three communities and the other two communities merge
into one, as in Figure 1 (so, K0 = 3, K1 = 4, K = 5).

For our algorithm, we take δ = 0.5, Cs = 6 and Λmin =
100. Ẑ is obtained using spectral clustering of the sum
of adjacency matrices with K = 2. For each experiment
and setup, we perform 10 Monte-Carlo (MC) runs. For
other competing methods, the default values of the tuning
parameters are used.

In setups (a), (b), (c) and (d) of Experiment I, we take
d = 10, 12, 5 and 10 respectively and ∥B0 − B1∥F =
0.028, 0.021, 0.014 and 0.057 respectively. For both τ̂ , τ̃
and for each MC run in each setup, we get Λ̄0 = 100
(note that L(Λ̄0) = 4). The other outputs are summarized
in Tables 1 and 2, where we report the mean (across 10
MC runs) relative errors (|τ̂ − τ |/Λ̄0 and |τ̃ − τ |/Λ̄0) and
empirical coverage probabilities (ECP) (fraction of times
among the 10 MC runs where the output interval contains
τ , i.e. l(Λ̄0) = 3), respectively. In Figure 2, we illustrate
the behavior of the CUSUM statistics, corresponding to
both τ̂ and τ̃ , in setup (b). In Figures 4, 5 and 6 of the
Supplementary Material, the same is illustrated in setups
(a), (c) and (d), respectively.

Each setup of Experiment II is performed under different
values of d. We summarize the values of the parameter d and

https://gitlab.com/soumendu041/cpd-sbm
https://gitlab.com/soumendu041/cpd-sbm
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Figure 2: Experiment I-(b). Top row: Observed CUSUM
statistics (4) (with l = 1, 2, 3, 4 and Λ = 100) for 10 MC
runs. The dashed lines display the mean threshold value.
Bottom row: Observed adjacency-based CUSUM statistics
(5) (with l = 1, 2, 3, 4 and Λ = 100) for 10 MC runs.

the corresponding mean (across 10 MC runs) relative errors
(|τ̂est − τ |/T , where τ̂est stands for a generic estimate) in
each setup for every method under comparison in Tables 3,
4, 5 and 6 of the Supplementary Material. In the case of
Wang et al. (2021) and Zhao et al. (2019), while computing
the mean relative error, if multiple changepoints are detected,
we consider the one closest to the true changepoint and
if no change point is detected, we consider the estimated
changepoint to be T = 200.

5.2 A Real-World Example of Community Splitting

We use the US Senate roll call data (1979 - 2023) from Lewis
et al. (2024) to illustrate the phenomenon of community
splitting. From data on votes taken on time-stamped bills,
we construct a network time-series. Senate seats constitute
nodes. Each of the 50 states has 2 senate seats, so the
networks all have size n = 100. The votes are “yay/nay”,
and sometimes missing/present — such cases are imputed
by taking the majority stand in the respective party, or if
that is not possible, taking the winning majority stand. We
discard roll calls wherein the majority ≥ 75, because such
unanimous roll calls do not reveal much structure. This
leaves us with 9770 roll calls. We convert these roll calls
into networks as follows. We consider 49 consecutive roll
calls to construct a single network. In each network, we put
an edge between two seats if they take the same stand on the
proposed bill of at least 34 (∼ 70%) roll calls among the 49
consecutive roll calls under consideration. This results in
T = 199 networks. We plot in the left panel of Figure 3 the
eigenvalue distributions of these networks. Typically two
eigenvalues stick outside of the bulk spectrum, hinting at
the presence of two communities. For each network A(t),
we also plot λ2(A

(t))2

λ1(A(t))
which is a measure of the strength of

the community structure. We observe an overall increasing
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Figure 3: Left: Eigenvalues of the roll call networks across
time. The dashed line shows the ratio of the squared second
largest eigenvalue and the largest eigenvalue of these net-
works, a measure of the strength of the community structure.
Right: Observed CUSUM statistics (4) (with l = 2 and
Λ = 70) for the period 1988− 1994. The peak corresponds
to 49 consecutive roll calls from 1992/09/10 to 1993/02/04.

trend in this measure, which aligns with the increase in party
polarization in US politics (Moody and Mucha (2013)).

We apply our changepoint estimation algorithm to this time-
series, taking δ = 0.5, Cs = 6 and Λmin = 70, and using
spectral clustering of the sum of adjacency matrices with
K = 2 to obtain Ẑ. The outputs of our algorithm are
Λ̄0 = 70, l(Λ̄0) = 2, τ̂ = 62. The estimated changepoint
at τ̂ = 62 corresponds to 49 roll calls from September 10,
1992 to February 04, 1993 (see the right panel of Figure 3).
This is near the November 1994 election, when the Republi-
can Party regained control of the House of Representatives
for the first time since 1956. A sharp increase in party polar-
isation had been reported around this period in Moody and
Mucha (2013).

Temporal variations in the eigenvalue distributions of these
networks suggest the presence of multiple changepoints.
In an analysis reported in Table 7 of the Supplementary
Material, we combine our method for single changepoint
estimation with wild binary segmentation (Fryzlewicz et al.,
2014) to detect several potentially important changepoints
in these roll call networks.

6 FUTURE DIRECTIONS

Although our method addresses many important challenges,
it has some limitations. For instance, it is not minimax-
optimal when K grows with n. Our method needs to be
improvised when there are multiple changepoints, individu-
als may switch communities at changepoints, or there are
correlations among the network layers. Further, it will be of
interest to extend our methodology to the setting of online
changepoints. We postpone the analysis of such extensions
to future work, keeping in mind the space restriction of the
current venue.
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Supplementary Material

A PROOFS OF THE MAIN RESULTS

In this section, we present the detailed proofs of our main results.

A.1 Proof of the Lower Bound

In this section, we prove Theorem 4.1.

Let Z be the community membership matrix of an equal-blocks SBM with K communities. Thus each block has size n/K.
Let Θ0 = ZB0Z

⊤ and Θ1 = ZB1Z
⊤ where Bi = ρSi, minu,v(Si)uv ≍ maxu,v(Si)uv , and

B1 −B0 = ραUU⊤, (8)

where U is a K × 1 random ±1 vector. We first choose B0, and perturb it according to (8) to obtain B1, ensuring that it is a
probability matrix by choosing α small enough.

Recall that the total variation distance dTV(µ, ν) between two probability measures on R is given by

dTV(µ, ν) = sup
A∈B(R)

|µ(A)− ν(A)|.

Further, if µ is absolutely continuous with respect to ν, then, the χ2-divergence χ2(µ, ν) between µ and ν is given by

χ2(µ, ν) =

∫ (
dµ

dν

)2

dν − 1.

It is a well-known fact that (see, e.g., Eq. (2.27) of Tsybakov (2008))

dTV(µ, ν) ⩽
√

χ2(µ, ν). (9)

In order to prove the lower bound, we need a bound on the total variation distance between Pt
B0

and Pt
B1

.
Lemma A.1. Assume that ρ ⩽ ρ0 < 1. Given any ϵ ∈ (0, 1), there exists c = c(ϵ) > 0, such that if

∥B1 −B0∥2F ⩽ c(1− ρ0)

(
K

n

)3
d

t
,

then
dTV

(
Pt

B0
,EB1∼ν1 P

t
B1

)
⩽ ε.

The proof of Lemma A.1 is given in Section B.

Proof of Theorem 4.1. We will use the two point method of Le Cam. Fix κ ⩽ T/3. Consider the two distributions PT
κ,ν1,ν0

and PT
T−κ,ν0,ν1

. Here ν0 = δB0
and ν1 is the distribution of B1 as defined in (8), where α is suitably chosen so that

condition (b) in the definition of Pγ,κ holds. Note that

|τ(PT
κ,ν1,ν0

)− τ(PT
T−κ,ν0,ν1

)| = T − 2κ.

We have by Le Cam’s lemma, we have

inf
τ̂

sup
P0∈Pγ,κ

E0 |τ̂ − τ(P0)| ⩾ (T − 2κ)(1− dTV(P
T
κ,ν1,ν0

,PT
T−κ,ν0,ν1

))

⩾
T

3
(1− dTV(P

T
κ,ν1,ν0

,PT
T−κ,ν0,ν1

)).



Chatterjee, Mukherjee, Sadhukhan

Now using the fact that dTV(µ1 ⊗ µ2, ν1 ⊗ ν2) ⩽ dTV(µ1, ν1) + dTV(µ2, ν2), we get that (by breaking each product into
three consecutive parts of size κ, (T − 2κ), κ)

dTV(P
T
κ,ν1,ν0

,PT
T−κ,ν0,ν1

) ⩽ 2dTV(P
κ
B0

,EB1∼ν1
Pκ

B1
) ⩽ 2ϵ,

where the last inequality follows from Lemma A.1, by suitably choosing γ = γ(ϵ) depending on c = c(ϵ). All in all, we
have shown that

inf
τ̂

sup
P0∈Pγ,κ

E0 |τ̂ − τ(P0)| ⩾
T

3
(1− 2ϵ).

This completes the proof. ■

A.2 Proof of the Upper Bound

In this section, we prove Theorem 4.4.

First, we briefly recall the oracle algorithm. Given the oracle parameter Λ, we divide the entire sequence [T ] into multiple
smaller windows of length Λ. The collection of smaller windows consists of intervals of the form Il = Il(Λ) := (Tl, Tl+Λ],
where

Tl = Tl(Λ) := (l − 1)

⌊
Λ

3

⌋
for l = 1, . . . , L = L(Λ) :=

⌈
3T

Λ

⌉
− 2.

For each l ∈ [L], we construct the cumulative sum (CUSUM) statistics corresponding to window Il, given by,

Ĝ
(Tl+u)

l = Ĝ
(Tl+u)

l (Λ) :=

(
u

Λ

(
1− u

Λ

))δ(
1

u

u∑
v=1

B̂(Tl+v) − 1

Λ− u

Λ∑
v=u+1

B̂(Tl+v)

)
,

for u ∈ S(Λ) :=

[⌊
Λ

3
∧ κ

2

⌋
+ 1, . . . ,Λ−

⌊
Λ

3
∧ κ

2

⌋]
,

where δ ∈ [0, 1] is an input of our algorithm. In each window Il, we maximize the Frobenius norm of the corresponding
CUSUM statistic w.r.t. u ∈ S(Λ) to obtain a candidate changepoint estimate τl, given by

τl = τl(Λ) := Tl + argmax
u∈S(Λ)

∥∥Ĝ(Tl+u)

l

∥∥
F
.

If the maximum of Frobenius norm of the CUSUM statistics evaluated at these candidates exceeds a threshold

max
l∈[L]

∥∥Ĝ(τl)

l

∥∥
F
> Cs

√(
K

n

)3
d̂

Λ
3 ∧ κ

2

,

we set the maximizing candidate as the changepoint estimate

l(Λ) = argmax
l∈[L]

∥∥Ĝ(τl)

l

∥∥
F

and τ̂(Λ) = τl(Λ).

In the above threshold, Cs is an input of our algorithm and d̂ is given by

d̂ =
1

nT

∑
t∈[T ]

∑
i,j∈[n]

A
(t)
ij .

Subsequently, we shall omit the dependence of various quantities on Λ for ease of presentation.

We need a uniform concentration inequality for the deviation between the observed and population CUSUM statistics.

Proposition A.2. Under Assumptions 3.1 and 4.2, there exist absolute constants C̄1, C̄2, C̄3, C̄4 > 0 such that for all
0 < θ ≤ (Cs ∨ 1)Kρ and ϵθ = C̄4θ/K

2,

P
(
max
l∈[L]

max
u∈S(Λ)

∥∥∥∥G(Tl+u)
l − Ĝ

(Tl+u)

l

∥∥∥∥
F

> θ

)
≤ C̄1K

2L exp

{
− C̄2θ

2

Kθ21

}
+ C̄3P(ϵθ,K, n, d, T ).
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The proof of Proposition A.2 is given in Section A.3.

We need a lower bound for the rate at which the population CUSUM statistic decays on both sides of τ .

Lemma A.3. Let l0 ∈ [L] be such that τ ∈ Il0 . Then for any η ∈ (0, 1) such that τ ± ηΛ ∈ Il0 , we have

∥∥∥Gτ
l0

∥∥∥
F
−
∥∥∥Gτ±ηΛ

l0

∥∥∥
F
≥ η

1 + η

(
τ − Tl0

Λ

(
1− τ − Tl0

Λ

))δ

∥B0 −B1∥F .

We also need bounds on the rate of concentration of d̂ around d.

Lemma A.4. Under Assumption 4.3,

P
(
d̂ ≥ 3c0

2
d

)
≤ exp

{
− c20

16
nTd

}
and P

(
d̂ ≤ c0

2
d

)
≤ exp

{
− c20

16
nTd

}
.

The proofs of Lemma A.3 and Lemma A.4 are given in Section B.

Finally define the collection Ī = {Īl}Ll=1 of intervals

Īl :=
[
Tl +

⌊
Λ

3
∧ κ

2

⌋
+ 1, Tl + Λ−

⌊
Λ

3
∧ κ

2

⌋]
.

Proof of the type-I error bound of Theorem 4.4. The algorithm produces an output only if

max
l∈[L]

max
u∈S(Λ)

∥∥∥∥Ĝ(Tl+u)

l

∥∥∥∥
F

> Cs

√(
K

n

)3
d̂

Λ
3 ∧ κ

2

> Cs

√(
K

n

)3
d̂

Λ ∧ κ
. (10)

Let l1 be such that τ̂ ∈ Īl1 . Observe that when B0 = B1,
∥∥G(τ̂)

l1

∥∥
F
= 0 and (10) implies that

∥∥∥∥Ĝ(τ̂)

l1

∥∥∥∥
F

> Cs

√(
K

n

)3
d̂

Λ ∧ κ
.

Thus the probability that the algorithm produces an output is at most

P

(∥∥∥∥Ĝ(τ̂)

l1

∥∥∥∥
F

−
∥∥∥∥G(τ̂)

l1

∥∥∥∥
F

> Cs

√(
K

n

)3
d̂

Λ ∧ κ

)

≤ P

(
max
l∈[L]

max
u∈S(Λ)

∥∥∥∥G(Tl+u)
l − Ĝ

(Tl+u)

l

∥∥∥∥
F

≥ Cs

√(
K

n

)3
d̂

Λ ∧ κ

)

≤ P

(
max
l∈[L]

max
u∈S(Λ)

∥∥∥∥G(Tl+u)
l − Ĝ

(Tl+u)

l

∥∥∥∥
F

≥ ∆1θ1

)
+ P

(
d̂ ≤ c0

2
d

)
.

Then the desired result follows from Proposition A.2 and Lemma A.4. ■

Proof of the type-II error bound of Theorem 4.4. The algorithm gives no output only if

max
l∈[L]

max
u∈S(Λ)

∥∥∥∥Ĝ(Tl+u)

l

∥∥∥∥
F

≤ Cs

√(
K

n

)3
d̂

Λ
3 ∧ κ

2

≤ 3Cs

√(
K

n

)3
d̂

Λ ∧ κ
(11)

Let l0 be such that τ ∈ Īl0 . Observe that∥∥∥∥G(τ)
l0

∥∥∥∥
F

=

(
τ − Tl0

Λ

(
1− τ − Tl0

Λ

))δ

∥B0 −B1∥F ≥
(
Λ ∧ κ

3Λ

(
1− Λ ∧ κ

3Λ

))δ

∥B0 −B1∥F ,
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and (11) implies that ∥∥∥∥Ĝ(τ)

l0

∥∥∥∥
F

≤ 3Cs

√(
K

n

)3
d̂

Λ ∧ κ
.

Thus the probability that the algorithm gives no output is at most

P

(∥∥∥∥G(τ)
l0

∥∥∥∥
F

−
∥∥∥∥Ĝ(τ)

l0

∥∥∥∥
F

>

(
Λ ∧ κ

3Λ

(
1− Λ ∧ κ

3Λ

))δ

∥B0 −B1∥F − 3Cs

√(
K

n

)3
d̂

Λ ∧ κ

)

≤ P

(
max
l∈[L]

max
u∈S(Λ)

∥∥∥∥G(Tl+u)
l − Ĝ

(Tl+u)

l

∥∥∥∥
F

≥ wθ1 − 3Cs

√(
K

n

)3
d̂

Λ ∧ κ

)

≤ P

(
max
l∈[L]

max
u∈S(Λ)

∥∥∥∥G(Tl+u)
l − Ĝ

(Tl+u)

l

∥∥∥∥
F

≥ ∆2θ1

)
+ P

(
d̂ ≥ 3c0

2
d

)
.

Then the desired result follows from Proposition A.2 and Lemma A.4. ■

Proof of the localization bound of Theorem 4.4. Fix η ∈ (0, 1). We first show that{
1

Λ

∣∣τ̂ − τ
∣∣ ≥ η

}
⊆

{
max
l∈[L]

max
u∈S(Λ)

∥∥∥∥G(Tl+u)
l − Ĝ

(Tl+u)

l

∥∥∥∥
F

≥ η

8

(
Λ ∧ κ

3Λ

(
1− Λ ∧ κ

3Λ

))δ

∥B0 −B1∥F

}
. (12)

So, assume that
∣∣τ̂ − τ

∣∣ ≥ ηΛ. Let l0 be such that τ ∈ Īl0 and l1 be such that τ̂ ∈ Īl1 . We consider the following cases:

Case 1: τ ∈ Īl1 . First consider the situation τ̂ ≥ τ + ηΛ(> τ). Then τ + ηΛ ∈ Il1 . As
∥∥G(Tl1

+u)

l1

∥∥
F

is decreasing for

u ∈ [τ − Tl1 ,Λ], we have,
∥∥G(τ̂)

l1

∥∥
F
≤
∥∥G(τ+ηΛ)

l1

∥∥
F

. Lemma A.3 then implies∥∥∥G(τ)
l1

∥∥∥
F
−
∥∥∥G(τ̂)

l1

∥∥∥
F
≥ η

1 + η

(
τ − Tl1

Λ

(
1− τ − Tl1

Λ

))δ

∥B0 −B1∥F

≥ η

2

(
Λ ∧ κ

3Λ

(
1− Λ ∧ κ

3Λ

))δ

∥B0 −B1∥F .

In the situation τ̂ ≤ τ − ηΛ(< τ), τ − ηΛ ∈ Il1 . As
∥∥G(Tl1

+u)

l1

∥∥
F

is increasing for u ∈ [1, τ − Tl1 ], we have,∥∥G(τ̂)
l1

∥∥
F
≤
∥∥G(τ−ηΛ)

l1

∥∥
F

. Lemma A.3 then implies∥∥∥G(τ)
l1

∥∥∥
F
−
∥∥∥G(τ̂)

l1

∥∥∥
F
≥ η

1 + η

(
τ − Tl1

Λ

(
1− τ − Tl1

Λ

))δ

∥B0 −B1∥F

≥ η

2

(
Λ ∧ κ

3Λ

(
1− Λ ∧ κ

3Λ

))δ

∥B0 −B1∥F .

Thus in both situations of Case I, as
∥∥Ĝ(τ)

l1

∥∥
F
≤
∥∥Ĝ(τ̂)

l1

∥∥
F

,∥∥∥G(τ)
l1

∥∥∥
F
−
∥∥∥G(τ̂)

l1

∥∥∥
F
=
∥∥∥G(τ)

l1

∥∥∥
F
−
∥∥∥∥Ĝ(τ)

l1

∥∥∥∥
F

+

∥∥∥∥Ĝ(τ̂)

l1

∥∥∥∥
F

−
∥∥∥G(τ̂)

l1

∥∥∥
F
+

∥∥∥∥Ĝ(τ)

l1

∥∥∥∥
F

−
∥∥∥∥Ĝ(τ̂)

l1

∥∥∥∥
F

≤ 2max
l∈[L]

max
u∈S(Λ)

∥∥∥∥G(Tl+u)
l − Ĝ

(Tl+u)

l

∥∥∥∥
F

.

Case 2: τ /∈ Il1 . Then,
∥∥G(τ̂)

l1

∥∥
F
= 0 and∥∥∥G(τ)

l0

∥∥∥
F
−
∥∥∥G(τ̂)

l1

∥∥∥
F
=

(
τ − Tl0

Λ

(
1− τ − Tl0

Λ

))δ

∥B0 −B1∥F

≥ η

(
Λ ∧ κ

3Λ

(
1− Λ ∧ κ

3Λ

))δ

∥B0 −B1∥F .
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Case 3: τ ∈ Il1 \ Īl1 and
(

τ−Tl1

Λ

(
1− τ−Tl1

Λ

))δ

< 1
2

(
Λ∧κ
3Λ

(
1− Λ∧κ

3Λ

))δ

. Then,
∥∥G(τ̂)

l1

∥∥
F
≤
∥∥G(τ)

l1

∥∥
F

and

∥∥∥G(τ)
l0

∥∥∥
F
−
∥∥∥G(τ̂)

l1

∥∥∥
F
≥
(
τ − Tl0

Λ

(
1− τ − Tl0

Λ

))δ

∥B0 −B1∥F −
∥∥G(τ)

l1

∥∥
F

≥
(
Λ ∧ κ

3Λ

(
1− Λ ∧ κ

3Λ

))δ

∥B0 −B1∥F −
(
τ − Tl1

Λ

(
1− τ − Tl1

Λ

))δ

∥B0 −B1∥F

≥
(
Λ ∧ κ

3Λ

(
1− Λ ∧ κ

3Λ

))δ

∥B0 −B1∥F − 1

2

(
Λ ∧ κ

3Λ

(
1− Λ ∧ κ

3Λ

))δ

∥B0 −B1∥F

≥ η

2

(
Λ ∧ κ

3Λ

(
1− Λ ∧ κ

3Λ

))δ

∥B0 −B1∥F .

Case 4: τ ∈ Il1 \ Īl1 and
(

τ−Tl1

Λ

(
1− τ−Tl1

Λ

))δ

≥ 1
2

(
Λ∧κ
3Λ

(
1− Λ∧κ

3Λ

))δ

. Note that in this case,
∥∥G(τ)

l0

∥∥
F
≥
∥∥G(τ)

l1

∥∥
F

as τ − Tl0 ≥ τ − Tl1 . Then, using a similar argument as in Case 1 and Lemma A.3, we get∥∥∥G(τ)
l0

∥∥∥
F
−
∥∥∥G(τ̂)

l1

∥∥∥
F
≥
∥∥∥G(τ)

l1

∥∥∥
F
−
∥∥∥G(τ̂)

l1

∥∥∥
F

≥ η

1 + η

(
τ − Tl1

Λ

(
1− τ − Tl1

Λ

))δ

∥B0 −B1∥F

≥ η

4

(
Λ ∧ κ

3Λ

(
1− Λ ∧ κ

3Λ

))δ

∥B0 −B1∥F .

Thus in Cases 2, 3, 4, as
∥∥Ĝ(τ)

l0

∥∥
F
≤
∥∥Ĝ(τ̂)

l1

∥∥
F

,∥∥∥G(τ)
l0

∥∥∥
F
−
∥∥∥G(τ̂)

l1

∥∥∥
F
=
∥∥∥G(τ)

l0

∥∥∥
F
−
∥∥∥∥Ĝ(τ)

l0

∥∥∥∥
F

+

∥∥∥∥Ĝ(τ̂)

l1

∥∥∥∥
F

−
∥∥∥G(τ̂)

l1

∥∥∥
F
+

∥∥∥∥Ĝ(τ)

l0

∥∥∥∥
F

−
∥∥∥∥Ĝ(τ̂)

l1

∥∥∥∥
F

≤ 2max
l∈[L]

max
u∈S(Λ)

∥∥∥∥G(Tl+u)
l − Ĝ

(Tl+u)

l

∥∥∥∥
F

.

Hence (12) holds. Then the desired result follows from Proposition A.2.

■

A.3 Proof of Proposition A.2

In this section, we give the proof of Proposition A.2.

Let Cm = {k : Zkm = 1} and nm = |Cm| for m ∈ [K]. Let
{
B̃(t)

}T
t=1

be the sequence of K ×K matrices given by,

B̃
(t)
k1k2

=
1

n2
k1k2

∑
i∈Ck1

,j∈Ck2
,i<j

A
(t)
ij , where n2

k1k2
=

{(nk1
2

)
, k1 = k2

nk1nk2 , k1 ̸= k2
, k1, k2 ∈ [K].

For l ∈ [L], define the collection of sets χ(1)
l and χ

(2)
l as follows:

χ
(1)
l = {(Tl, Tl + u] : u ∈ S(Λ)}, χ

(2)
l = {(Tl + u, Tl + Λ] : u ∈ S(Λ)}.

We need the following concentration inequalities to prove Proposition A.2.
Lemma A.5. Under Assumption 4.2, there exists absolute constants C̃1, C̃2 > 0 such that for all 0 < θ ≤ (Cs ∨ 1)Kρ and
i = 1, 2,

P
(
max
l∈[L]

max
J∈χ

(i)
l

∥∥∥∥ 1

|J |
∑
s∈J

(
B̃(s) −B(s)

)∥∥∥∥
F

> θ

)
≤ C̃1K

2L exp

{
− C̃2θ

2

Kθ21

}
.
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Lemma A.6. Under Assumptions 3.1 and 4.2, for some absolute constant C̃4 > 0, for all 0 < θ ≤ (Cs ∨ 1)Kρ, i = 1, 2

and ϵθ = C̃4θ/K
2,

P
(
max
l∈[L]

max
J∈χ

(i)
l

∥∥∥∥ 1

|J |
∑
s∈J

(
B̂(s) − B̃(s)

)∥∥∥∥
F

> θ

)
≤ P{ϵθ, k, n, T, d}.

The proofs of Lemma A.5 and Lemma A.6 are given in Section B.

Proof of Proposition A.2. Observe that

max
l∈[L]

max
u∈S(Λ)

∥∥∥∥G(Tl+u)
l − Ĝ

(Tl+u)

l

∥∥∥∥
F

≤ 2 max
i=1,2

max
l∈[L]

max
J∈χ

(i)
l

∥∥∥∥ 1

|J |
∑
s∈J

(
B̂(s) −B(s)

)∥∥∥∥
F

≤ 2 max
i=1,2

max
l∈[L]

max
J∈χ

(i)
l

∥∥∥∥ 1

|J |
∑
s∈J

(
B̂(s) − B̃(s)

)∥∥∥∥
F

+ 2max
i=1,2

max
l∈[L]

max
J∈χ

(i)
l

∥∥∥∥ 1

|J |
∑
s∈J

(
B̃(s) −B(s)

)∥∥∥∥
F

Hence,

P
(
max
l∈[L]

max
u∈S(Λ)

∥∥∥∥G(Tl+u)
l − Ĝ

(Tl+u)

l

∥∥∥∥
F

> θ

)
≤

2∑
i=1

[
P
(
max
l∈[L]

max
J∈χ

(i)
l

∥∥∥∥ 1

|J |
∑
s∈J

(
B̂(s) − B̃(s)

)∥∥∥∥
F

>
θ

2

)
+ P

(
max
l∈[L]

max
J∈χ

(i)
l

∥∥∥∥ 1

|J |
∑
s∈J

(
B̃(s) −B(s)

)∥∥∥∥
F

>
θ

2

)]
.

The desired result follows from Lemma A.5 and Lemma A.6. ■

B PROOFS OF VARIOUS LEMMAS

In this section, we give the proofs of the required Lemmas.

Proof of Lemma A.1. Because of (9), it is enough to show that

χ2(Pt
B0

,EB1∼ν1 P
t
B1

) ⩽ ϵ2.

Using the same calculation as in Eq. (3.1) in the proof of Lemma 3.1 of Bhattacharyya et al. (2020), we get that

1 + χ2(Pt
B0

,EB1∼ν1
Pt

B1
) ⩽ EU,Ũ exp

(
tα2ρ

1− ρ
⟨ZUU⊤Z⊤, ZŨŨ⊤Z⊤⟩

)
Now note that

⟨ZUU⊤Z⊤, ZŨŨ⊤Z⊤⟩ = tr(ZUU⊤Z⊤ZŨŨ⊤Z⊤)

= tr(U⊤Z⊤ZŨŨ⊤Z⊤ZU)

= (U⊤Z⊤ZŨ)2

= (
n

K
)2(U⊤Ũ)2.

By Hoeffding’s inequality,

P(|U⊤Ũ | ⩾
√
ℓK) ⩽ 2 exp

(
− 2ℓK

4K

)
= 2 exp(−ℓ/2).
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Therefore

EU,Ũ exp

(
tα2ρ

1− ρ
⟨ZUU⊤Z⊤, ZŨŨ⊤Z⊤⟩

)
= EU,Ũ exp

(
tα2ρ

1− ρ
(
n

k
)2(U⊤Ũ)2

)
=

∫ ∞

0

P

(
exp

(
tα2ρ

1− ρ
(
n

k
)2(U⊤Ũ)2

)
> u

)
du

=

∫ ∞

0

P

(
(U⊤Ũ)2 > log(u)

K2

n2

1− ρ

tα2ρ

)
du

= 1 +

∫ ∞

1

P

(
(U⊤Ũ)2 > log(u)

K2

n2

1− ρ

tα2ρ

)
du

⩽ 1 +

∫ ∞

1

2 exp

(
− 1

2
log(u)

K

n2

1− ρ

tα2ρ

)
du

= 1 + 2

∫ ∞

1

du

uζ

(
where ζ :=

1

2

K

n2

1− ρ

tα2ρ

)
= 1 +

2

ζ − 1
⩽ 1 + ϵ2,

provided that ζ ⩾ 1 + 2
ϵ2 , i.e.

tα2ρ
n2

K
⩽

1

2

(
1 +

2

ϵ2

)−1

(1− ρ) = c(1− ρ),

where

c = c(ϵ) =
1

2

(
1 +

2

ϵ2

)−1

.

It follows that given ϵ > 0, there exists c(ϵ) > 0 such that

χ2(Pt
Θ0

,Pt
Θ1

) ⩽ ϵ2,

whenever

tα2ρ
n2

K
⩽ c(1− ρ).

We now note that
∥B1 −B0∥2F = α2ρ2(U⊤U)2 = α2ρ2K2.

Thus we get that the condition
t∥B1 −B0∥2Fn2

ρK3
⩽ c(1− ρ)

or, equivalently,

∥B1 −B0∥2F ⩽ c(1− ρ)

(
K

n

)3
d

t

implies that
χ2(Pt

B0
,EB1∼ν1

Pt
B1

) ⩽ ϵ2.

In particular, assuming that ρ ⩽ ρ0 < 1 in the class of models to be considered, we get that the condition

∥B1 −B0∥2F ⩽ c(1− ρ0)

(
K

n

)3
d

t

implies that
χ2(Pt

B0
,EB1∼ν1

Pt
B1

) ⩽ ϵ2.

This completes the proof. ■
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Proof of Lemma A.3. We show the proof for the case
∥∥Gτ+ηΛ

l0

∥∥
F

. The proof for the case
∥∥Gτ−ηΛ

l0

∥∥
F

is similar. Let
τ + ηΛ ∈ Il0 . Then,∥∥∥Gτ

l0

∥∥∥
F
−
∥∥∥Gτ+ηΛ

l0

∥∥∥
F

=

[(
τ − Tl0

Λ

(
1− τ − Tl0

Λ

))δ

−
(
τ − Tl0 + ηΛ

Λ

(
1− τ − Tl0 + ηΛ

Λ

))δ
τ − Tl0

τ − Tl0 + ηΛ

]
∥B0 −B1∥F

≥
(
τ − Tl0

Λ

(
1− τ − Tl0

Λ

))δ

∥B0 −B1∥F

[
1−

(
1− ηΛ

τ − Tl0 + ηΛ

)1−δ (
1− ηΛ

Λ− τ + Tl0 + ηΛ

)δ
]
(13)

Using the weighted AM-GM inequality and the fact that 0 ≤ τ − Tl0 ≤ Λ, we get(
1− ηΛ

τ − Tl0 + ηΛ

)1−δ (
1− ηΛ

Λ− τ + Tl0 + ηΛ

)δ

≤ (1− δ)

(
1− ηΛ

τ − Tl0 + ηΛ

)
+ δ

(
1− ηΛ

Λ− τ + Tl0 + ηΛ

)

= 1− ηΛ

[
1− δ

τ − Tl0 + ηΛ
+

δ

Λ− τ + Tl0 + ηΛ

]
≤ 1− ηΛ

[
1− δ

Λ + ηΛ
+

δ

Λ + ηΛ

]
= 1− η

1 + η
. (14)

Combining (13) and (14), we get the desired result. ■

Proof of Lemma A.5. We give the proof for i = 1. The proof for i = 2 is similar. Let M =
⌊
log2

(
Λ/
(
Λ
3 ∧ κ

2

))⌋
. For

m ∈ [M ], define sm = 2m
(
Λ
3 ∧ κ

2

)
. Then, using the union bound, the fact that Var

(
A

t)
ij

)
≤ ρ for all t ∈ [T ] and i, j ∈ [n],

the maximal form of Bernstein’s inequality and Assumption 4.2, we get that for some absolute constants C,C ′, C̃2 > 0,

P
(

max
u∈[sm/2,sm]

∥∥∥∥ 1u
u∑

v=1

(
B̃(Tl+v) −B(Tl+v)

)∥∥∥∥
F

> θ

)

≤ P
(

max
u∈[sm/2,sm]

∥∥∥∥ u∑
v=1

(
B̃(Tl+v) −B(Tl+v)

)∥∥∥∥
F

>
θsm
2

)

≤ P
( ∑

k1,k2∈[K]

max
u∈[sm/2,sm]

( u∑
v=1

(
B̃

(Tl+v)
k1k2

−B
(Tl+v)
k1k2

))2

>
θ2s2m
4

)

≤
∑

k1,k2∈[K]

P
(

max
u∈[sm/2,sm]

∣∣∣ u∑
v=1

(
B̃

(Tl+v)
k1k2

−B
(Tl+v)
k1k2

)∣∣∣ > θsm
2K

)

=
∑

k1,k2∈[K]

P
(

max
u∈[sm/2,sm]

∣∣∣∣ u∑
v=1

1

n2
k1k2

∑
i∈Ck1

,j∈Ck2
,i<j

(
A

(Tl+v)
ij − E

(
A

(Tl+v)
ij

))∣∣∣∣ > θsm
2K

)

≤
∑

k1,k2∈[K]

P
(

max
u∈[sm/2,sm]

∣∣∣∣ u∑
v=1

∑
i∈Ck1

,j∈Ck2
,i<j

(
A

(Tl+v)
ij − E

(
A

(Tl+v)
ij

))∣∣∣∣ > Cθsm
K

( n

K

)2)

≤
∑

k1,k2∈[K]

2 exp

{
− C2θ2s2mn4/(2K6)∑sm

v=1

∑
i∈Ck1

,j∈Ck2
,i<j Var

(
A

(Tl+v)
ij

)
+ Cθsmn2/(3K3)

}

≤ 2K2 exp

{
− C ′θ2sm

K(K/n)3d

}

≤ 2K2 exp

{
− C̃2θ

22m

Kθ21

}
.

Hence, using the union bound and the summability of a geometric series, for some absolute constant C̃1, we get that

P
(

max
m∈[M ]

max
u∈[sm/2,sm]

∥∥∥∥ 1u
u∑

v=1

(
B̃(Tl+v) −B(Tl+v)

)∥∥∥∥
F

> θ

)
≤ C̃1K

2 exp

{
− C̃2θ

2

Kθ21

}
.
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Now note that

max
l∈[L]

max
J∈χ

(1)
l

∥∥∥∥ 1

|J |
∑
s∈J

(
B̃(s) −B(s)

)∥∥∥∥
F

≤ max
l∈[L]

max
m∈[M ]

max
u∈[sm/2,sm]

∥∥∥∥ 1u
u∑

v=1

(
B̃(Tl+v) −B(Tl+v)

)∥∥∥∥
F

.

Using the union bound again, we get the desired result. ■

Proof of Lemma A.6. Fix i ∈ [2] and ϵ > 0. Let Z̄(ϵ) be a (non-random) membership matrix with at most ϵn nodes being
classified differently than Z. In other words, Z̄(ϵ) has at most ϵn rows that are different than the corresponding rows of
Z. Let C̄m(ϵ) = {k : Z̄(ϵ)km = 1}, n̄m(ϵ) = |C̄m(ϵ)| for m ∈ [K]. Define a sequence of matrices {B̄(t)(ϵ)}Tt=1 in the
following way: for k1, k2 ∈ [K],

B̄(t)(ϵ)k1k2 =
1

n̄2
k1k2

(ϵ)

∑
i∈C̄k1

(ϵ),j∈C̄k2
(ϵ),i<j

A
(t)
ij , where n̄2

k1k2
(ϵ) =

{(n̄k1
(ϵ)

2

)
, k1 = k2

n̄k1
(ϵ)n̄k2

(ϵ), k1 ̸= k2
.

Note that for all m ∈ [K], nm + ϵn ≥ n̄m(ϵ) ≥ nm − ϵn ≥ C2n/K − ϵn and
∣∣Cm \ C̄m(ϵ)

∣∣ ≤ ϵn,
∣∣C̄m(ϵ) \ Cm

∣∣ ≤
ϵn, Cm ∩ C̄m(ϵ) ≤ C1n/K. Therefore, for all t ∈ [T ],∣∣B̃(t)

k1k2
− B̄(t)(ϵ)k1k2

∣∣
=

∣∣∣∣ 1

n̄2
k1k2

(ϵ)

∑
i∈C̄k1

(ϵ),j∈C̄k2
(ϵ),i<j

A
(t)
ij − 1

n2
k1k2

∑
i∈Ck1

,j∈Ck2
,i<j

A
(t)
ij

∣∣∣∣
≤ 1

n̄2
k1k2

(ϵ)

∣∣∣∣ ∑
i∈C̄k1

(ϵ),j∈C̄k2
(ϵ),i<j

A
(t)
ij −

∑
i∈Ck1

,j∈Ck2
,i<j

A
(t)
ij

∣∣∣∣+ ∣∣∣∣ n2
k1k2

n̄2
k1k2

(ϵ)
− 1

∣∣∣∣( 1

n2
k1k2

∑
i∈Ck1

,j∈Cl1
,i<j

A
(t)
ij

)

≤ 1

n̄2
k1k2

(ϵ)

(
2ϵ2n2 + 4ϵC1

n2

K

)
+

∣∣∣∣ n2
k1k2

n̄2
k1k2

(ϵ)
− 1

∣∣∣∣.
Note that n2

k1k2
≤ C2

1 (n/K)2 and n̄2
k1k2

(ϵ) ≥
(
C2

n
K − ϵn

)2
/4. These and some algebra show that for some appropriately

chosen constant C̃4,
∣∣B̃(t)

k1k2
− B̄(t)(ϵ)k1k2

∣∣ ≤ Kϵ/C̃4. Then,

max
l∈[L]

max
J∈χ

(i)
l

∥∥∥∥ 1

|J |
∑
s∈J

(
B̄(s)(ϵ)− B̃(s)

)∥∥∥∥
F

≤ K2ϵ/C̃4.

Consequently, {
M(Ẑ) ≤ ϵθn

}
⊆
{
max
l∈[L]

max
J∈χ

(i)
l

∥∥∥∥ 1

|J |
∑
s∈J

(
B̂(s) − B̃(s)

)∥∥∥∥
F

≤ θ

}
.

This implies that

P
(
max
l∈[L]

max
J∈χ

(i)
l

∥∥∥∥ 1

|J |
∑
s∈J

(
B̂(s) − B̃(s)

)∥∥∥∥
F

> θ

)
≤ P

(
M(Ẑ) ≥ ϵθn

)
≤ P{ϵθ, k, n, T, d}.

This completes the proof. ■

Proof of Lemma A.4. Note that E
(
d̂
)
= d̄ = c0d. Bernstein’s inequality implies that for any t ∈ (0, 1),

P
(
d̂− d̄ ≥ td

)
= P

( ∑
t∈[T ]

∑
i,j∈[n]

(
A

(t)
ij − E

(
A

(t)
ij

))
≥ nTtd

)

≤ exp

{
−

1
2n

2T 2t2d2∑
t∈[T ]

∑
i,j∈[n] Var

(
A

(t)
ij

)
+ 1

3nTtd

}

≤ exp

{
−

1
2n

2T 2t2d2

nTd+ 1
3nTtd

}
≤ exp

{
− t2

4
nTd

}
.

Putting t = c0/2, we get the upper-tail inequality. The lower-tail inequality can be proved similarly. ■
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C ADDITIONAL EMPIRICAL RESULTS

C.1 Simulation Studies

In Figures 4, 5 and 6, we illustrate the behavior of the CUSUM statistics, corresponding to both τ̂ and τ̃ , in setups (a),
(c) and (d) of Experiment I, respectively. In Tables 3, 4, 5 and 6, we report the values of the parameter Td and the
corresponding mean (across 10 MC runs) relative errors for every method under comparison in setups (a), (b), (c) and (d) of
Experiment II, respectively.
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Figure 4: Experiment I-(a). Top row: Observed CUSUM statistics (4) (with l = 1, 2, 3, 4 and Λ = 100) for 10 MC runs.
The dashed lines display the mean threshold value. Bottom row: Observed adjacency-based CUSUM statistics (5) (with
l = 1, 2, 3, 4 and Λ = 100) for 10 MC runs.

Table 3: Experiment II-(a): Mean Relative Error

Method Td = 200 Td = 100 Td = 20

Bhattacharjee et al. (2020) 0.001 0.004 0.114
Bhattacharyya et al. (2020) 0.318 0.3385 0.3245
Wang et al. (2021) 0.375 0.375 0.375
Zhao et al. (2019) 0.0825 0.1525 0.375
Our Method 0 0.0015 0.013

C.2 A Real-World Example of Community Splitting

For estimating (multiple) changepoints in the US Senate roll call data, we couple our algorithm with wild binary segmentation
(Fryzlewicz et al., 2014). The number and locations of the detected changepoints depend on the value of the threshold used
in wild binary segmentation. We summarize them in Table 7. Each detected changepoint correspond to 49 consecutive roll
calls within a certain time-period that we report in Table 8.
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Figure 5: Experiment I-(c). Top row: Observed CUSUM statistics (4) (with l = 1, 2, 3, 4 and Λ = 100) for 10 MC runs.
The dashed lines display the mean threshold value. Bottom row: Observed adjacency-based CUSUM statistics (5) (with
l = 1, 2, 3, 4 and Λ = 100) for 10 MC runs.
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Figure 6: Experiment I-(d). Top row: Observed CUSUM statistics (4) (with l = 1, 2, 3, 4 and Λ = 100) for 10 MC runs.
The dashed lines display the mean threshold value. Bottom row: Observed adjacency-based CUSUM statistics (5) (with
l = 1, 2, 3, 4 and Λ = 100) for 10 MC runs.
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Table 4: Experiment II-(b): Mean Relative Error

Method Td = 400 Td = 200 Td = 40

Bhattacharjee et al. (2020) 0 0.0005 0.249
Bhattacharyya et al. (2020) 0.297 0.28 0.3085
Wang et al. (2021) 0.375 0.375 0.375
Zhao et al. (2019) 0.082 0.102 0.3825
Our Method 0 0 0.0125

Table 5: Experiment II-(c): Mean Relative Error

Method Td = 180 Td = 90 Td = 18

Bhattacharjee et al. (2020) 0.0015 0.0015 0.0895
Bhattacharyya et al. (2020) 0.15 0.1705 0.1325
Wang et al. (2021) 0.375 0.375 0.375
Zhao et al. (2019) 0.156 0.1535 0.375
Our Method 0.0015 0.0005 0.0795

Table 6: Experiment II-(d): Mean Relative Error

Method Td = 200 Td = 100 Td = 20

Bhattacharjee et al. (2020) 0.011 0.0165 0.2635
Bhattacharyya et al. (2020) 0.328 0.293 0.302
Wang et al. (2021) 0.375 0.375 0.375
Zhao et al. (2019) 0.1375 0.162 0.375
Our Method 0.0015 0.003 0.0705

Table 7: Wild Binary Segmentation

Threshold Detected Changepoints

60

√(
K
n

)3 d̂
T 62

50

√(
K
n

)3 d̂
T 40, 62, 125

40

√(
K
n

)3 d̂
T 40, 62, 71, 116, 125, 133, 158

Table 8: Time-Period Corresp. to the Detected Changepoints

Detected Changepoints Time-Period

40 1986/09/16 - 1986/10/16
62 1992/09/10 - 1993/02/04
71 1994/07/13 - 1994/08/10

116 2004/05/04 - 2004/09/14
125 2006/07/12 - 2007/01/17
133 2008/05/14 - 2009/01/22
158 2014/12/01 - 2014/12/13


	INTRODUCTION
	CONTRIBUTIONS AND COMPARISON WITH RELATED WORKS
	Setup
	Our Contributions
	Summary of Related Theoretical Results

	PROPOSED METHODOLOGY
	Estimation of the Community Membership Matrix
	Estimation of the Block-Connectivity Matrices
	Estimation of the Changepoint
	Motivation behind the Estimation Algorithm

	MAIN RESULTS
	Lower Bound
	Upper Bound

	EMPIRICAL RESULTS
	Simulation Experiments
	A Real-World Example of Community Splitting

	FUTURE DIRECTIONS
	PROOFS OF THE MAIN RESULTS
	Proof of the Lower Bound
	Proof of the Upper Bound
	Proof of Proposition A.2

	PROOFS OF VARIOUS LEMMAS
	ADDITIONAL EMPIRICAL RESULTS
	Simulation Studies
	A Real-World Example of Community Splitting


